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A numerical investigation of the onset of three-dimensional states in Taylor–Couette
flow for aspect ratio one is presented. Two main branches exist, one preserving and the
other breaking the reflection symmetry about the mid-plane. Both branches become
three-dimensional via Hopf bifurcations to rotating waves with different azimuthal
wavenumbers. Moreover, the symmetric branch exhibits secondary Hopf bifurcations
and transitions to complex spatio-temporal dynamics at Reynolds numbers Re ∼ 1000.
The analysis of the three-dimensional solutions shows that the dynamics is driven by
the jet of angular momentum erupting from the inner cylinder boundary layer and its
interactions with the sidewall and endwall layers. The various solutions are organized
by a lattice of spatial and spatio-temporal symmetry subgroups which provides a
framework for the relationships between the solution types and for the symmetry-
breaking bifurcations. The results obtained agree with previous experimental results
and help clarify many aspects of the mode competition at the higher Re values.

1. Introduction
The flow between two concentric cylinders driven by their differential rotation,

Taylor–Couette flow, has played a central role in the development of hydrodynamic
stability theory (Taylor 1923). Its geometric simplicity allows well-controlled experi-
ments which may shed light on the transition to hydrodynamic turbulence. Theoretical
progress originally proceeded by making two geometric idealizations: (i) that the
height-to-gap aspect ratio of the annulus Γ → ∞, and (ii) that the radius ratio of
the two cylinders η → 1, i.e. infinite cylinders and narrow gap approximations. The
simplifications in the mathematical description of the problem due to these geometric
idealizations are that in the limit η → 1, curvature effects are negligible. The limit
Γ → ∞, together with the assumption of periodicity in the axial z-direction leads
to a (unique) basic state that is a function only of r , specified by the radii and
the non-dimensional rotation rates of the cylinders (i.e. Reynolds numbers). Under
these idealizations, the system is invariant to both reflection about any height z and
translations in z (O(2) symmetry), and arbitrary rotations about the axis (SO(2)
symmetry). Nevertheless, the limit Γ → ∞ is singular, and endwall effects are not
negligible even in very long Taylor–Couette systems (Benjamin 1978a, b; Lorenzen &
Mullin 1985; Cliffe, Kobine & Mullin 1992). The presence of endwalls, even in the
limit of being infinitely far apart, completely destroys the translation invariance of
the O(2) symmetry in the idealized theory. In any physical Taylor–Couette system in
which the two endwalls are both stationary or both rotating at the same rate, the
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Figure 1. Solutions with different numbers of Taylor cells. Arrows indicate the outgoing jets.
The flow at the endwalls moves inward for normal modes N2 and N4, and outward for
anomalous modes A3, A3∗ and A4. The schematics show a meridonal section (θ = constant),
r = ri and r = ro are the inner and outer cylinder radii and the endwalls are at z = ±h/2.

symmetry of the problem (ignoring any small imperfections) is SO(2) × Z2, consisting
of rotations about the axis and a reflection about the cylinder half-height.

A direct consequence of destroying the continuous translation symmetry by the
presence of endwalls is that instead of a continuous spectrum in axial wavenumber,
the system has a discrete spectrum in z, and the basic state is a function of (r, z).
Instability is still, primarily, centrifugal in nature, owing to the rotating inner cylinder
introducing a large negative radial gradient of angular momentum into the flow. The
flow tends to redistribute the angular momentum via viscous diffusion if the flow
inertia is sufficiently small, or by nonlinear advection for larger flow inertia. When
the outer cylinder is at rest, which is the case considered in this paper, the nonlinear
advection of angular momentum is accomplished by the eruption of jets of angular
momentum from the boundary layer on the rotating inner cylinder, which generally
lead to the formation of counter-rotating cells about the jets – known as Taylor
vortices. These vortices tend to have unit aspect ratio in (r, z) when the endwalls are
far apart, but for short annuli the cells can be quite far from unit aspect ratio.

For a physical apparatus, the endwalls are non-slip and Γ is finite. For endwalls at
rest, the endwall boundary layer flow tends to be radially inward; on increasing Re
from small values, weak Taylor-like cells appear close to the endwalls that become
stronger and eventually fill the gap between the cylinders in a smooth process resulting
in cellular flow with radial inflow at the endwalls. Figure 1 depicts examples of these
so-called normal modes with radial inflow at the boundaries, N2 with two cells
and N4 with four cells. The cellular flows with radial outflow at the boundaries are
disconnected branches, the so-called anomalous cases (Benjamin 1978a, b; Benjamin &
Mullin 1981). The solutions A3, A3∗ and A4 in figure 1 depict anomalous modes with
three and four cells. The flows N2, N4, and A4 are Z2-invariant, and A3 and A3∗ are
symmetrically related.

For a given finite Γ , one of the normal cellular flows is smoothly connected with
the Stokes flow solution at Re → 0. The normal modes, being Z2-invariant, have an
even number of cells. As the more stable cells tend to be square, for the case shown
schematically in figure 1 with Γ ∼ 4, the flow smoothly connected with the Stokes
flow solution is N4. The other states appear at higher Re via the following types of
bifurcations. The Z2-symmetric cellular flows, such as N2 and A4, appear in saddle-
node bifurcations, as shown in figure 2(a). The flows with broken Z2-symmetry appear
via pitchfork bifurcations, as illustrated in figure 2(b); the pitchfork bifurcation may
be supercritical (left) or subcritical (right). In the subcritical case, a pair of saddle-
node bifurcations occurs simultaneously at a critical Re. For some Γ , the subcritical
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Figure 2. Possible bifurcations for finite Γ . In (a) the bifurcations take place in a
Z2-invariant subspace, and in (b) the bifurcations break the Z2-symmetry.
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Figure 3. (a) Schematic of the cusp bifurcation, (b) one-parameter paths near the cusp
bifurcation, and (c) bifurcations along the one-parameter paths in (b).

pitchfork bifurcation occurs at Re → ∞, leaving a pair of simultaneous saddle-node
bifurcations that do not connect with the symmetric branch N4.

As Γ is varied, the number and type of bifurcations change, as do their relative
ordering with respect to Re. A relevant case is when the branch smoothly connected
with the Stokes flow changes. For example, if we reduce Γ in figure 1, then for
sufficiently small Γ the cellular flow connected with the trivial solution changes from
N4 to N2. Figure 3 shows schematically the competition between the two modes,
which is organized by a codimension-two cusp bifurcation (figure 3a). Figure 3(b)
shows several one-parameter paths near the cusp and figure 3(c) shows schematics of
the bifurcations along these one-parameter paths. Path 1, through the cusp point and
tangent to the cusp, is identical to a pitchfork bifurcation. Paths 2 and 3 show the
two possible unfoldings, where either the N2 or the N4 state remains continuously
connected with the Stokes flow. Path 4 shows the relationship between the two saddle-
node bifurcations, connected via an unstable intermediate state, Nm in figure 3(a).
A pitchfork due to symmetry breaking is a codimension-one bifurcation, located by
varying only one parameter. The codimension-two pitchfork corresponding to path 1 is
not associated with any symmetry, and must necessarily be part of a codimension-two
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bifurcation that includes the unfolding of the pitchfork, as in the case of the cusp
bifurcation. This scenario is typical for moderate to large aspect ratios, Γ � 3.

For small Γ , anomalous modes with a small number of cells bifurcate at low Re
and the competition between these and the normal modes leads to very rich dynamics.
For Γ ∼ 1, the competition is between A1 and N2. The low-Re regime, where the flows
remain steady and axisymmetric, has been extensively studied over the past quarter-
century (Benjamin & Mullin 1981; Cliffe 1983; Pfister et al. 1988; Pfister, Schulz &
Lensch 1991; Pfister, Buzug & Enge 1992) and a comprehensive understanding of the
dynamics involved has emerged (Mullin et al. 2002). Some solutions leading to time-
periodic flow have also been found when the Navier–Stokes equations are restricted
to being axisymmetric (Furukawa et al. 2002). However, at moderate to large Re
(Re > 800), the flows are unstable to non-axisymmetric perturbations. As noted in
Mullin et al. (2002): “Time dependence and disorder is observed in the flow at higher
Re, but an understanding of its evolution remains an outstanding challenge.” Here,
we provide a systematic study of the transition to spatio-temporal complexity using
direct numerical simulations of the three-dimensional Navier–Stokes equations. We
consider a one-parameter path of increasing Re while the aspect ratio and radius ratio
are fixed at Γ = 1.0 and η = 0.5. This path cuts through the heart of the competition
between A1 and N2, where for Re > 850 multiple bifurcations of these states have been
observed experimentally (Pfister et al. 1991, 1992). The three-dimensional numerical
solutions show that the manner in which the jet of angular momentum erupting from
the inner cylinder boundary layer behaves, as it redistributes the angular momentum
and its interactions with the sidewall and endwall boundary layers, leads to the
various spatio-temporal states which break various aspects of the symmetry of the
problem.

2. Navier–Stokes equations and the numerical scheme
Consider the flow in an annular region with inner radius ri and outer radius ro,

capped by endwalls a distance h apart. The endwalls and the outer cylinder are
stationary, and the flow is driven by the rotation of the inner cylinder at constant
angular speed Ω . To non-dimensionalize the system, the annular gap d = ro − ri is
used as the length scale, and the time scale is the viscous time d2/ν, where ν is the
kinematic viscosity of the fluid. The system is governed by two geometric parameters
and one dynamic parameter:

radius ratio: η = ri/ro,

aspect ratio: Γ = h/d,

Reynolds number: Re = Ωrid/ν.

Throughout this study, we shall keep the geometry fixed at Γ = 1 and η = 0.5 and
vary Re. Figure 4 shows a schematic of the flow.

In cylindrical coordinates, (r, θ, z), the non-dimensional velocity vector and pressure
are denoted by u = (u, v, w) and p, respectively. The governing equations are the (non-
dimensional) Navier–Stokes equations

∂u/∂t + (u · ∇)u = −∇p + ∇2u,

∇ · u = 0,

}
(2.1)

subject to no-slip boundary conditions. Specifically, u, v, and w are zero on all sta-
tionary boundaries, i.e. at the outer cylinder, r = ro/d =1/(1 − η) = 2, and the top and
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Figure 4. Schematic of the flow apparatus.

bottom endwalls z = ± 0.5h/d = ± 0.5Γ . On the rotating inner cylinder, r = ri/d = η/

(1 − η) = 1, u and w are zero and v = Re.
To solve (2.1), a stiffly stable semi-implicit second-order projection scheme is used,

where the linear terms are treated implicitly while the nonlinear terms are explicit.
For the space variables, we use a Legendre–Fourier approximation (Lopez & Shen
1998; Lopez, Marques & Shen 2002) The spectral convergence of the code has
already been extensively described for related problems (Lopez & Marques 2003;
Lopez, Marques & Shen 2004; Abshagen et al. 2005a, b; Lopez & Marques 2005).
The results presented here have 48 Legendre modes in the radial and axial directions,
respectively, and up to 48 Fourier modes in θ (resolving up to azimuthal wavenumber
m = 24); the time-step used is δt = 2 × 10−5.

One global measure we have used to characterize the various solutions obtained is
the (scaled) kinetic energy in the mth Fourier mode of the solution:

Em =
1

2Re2

∫ z=Γ/2

z=−Γ/2

∫ r=2

r=1

um · umr dr dz, (2.2)

where um is the mth Fourier mode of the velocity field. For oscillatory states where
Em is time-dependent, we use the time average 〈Em〉 and the oscillation amplitude
�Em as characteristics.

3. Axisymmetric states and bifurcations
We begin with a brief summary of the A1–N2 mode competition for Re < 750.

This has been extensively studied previously (see references in the Introduction), and
is presented here to provide context for the new results at higher Re. Figure 5 is a
bifurcation diagram with Re for Γ = 1 and η =0.5, showing all the stable solution
branches (curves with filled symbols) we have found, as well as the extension of some
of these when the solutions lose stability at Hopf or pitchfork bifurcations (curves
with open symbols).

The solution that is smoothly connected to the Stokes flow (at Re → 0) is the two-
cell normal mode N2. N2 has full symmetry; it is steady, axisymmetric and reflection
symmetric. The actions of these invariances on any solution U = (u, v, w)(r, θ, z, t)
are

time translations: Φτ (u, v, w)(r, θ, z, t) = (u, v, w)(r, θ, z, t + τ ), τ ∈ �, (3.1)

rotations: Rα(u, v, w)(r, θ, z, t) = (u, v, w)(r, θ + α, z, t), α ∈ [0, 2π), (3.2)

reflection: K(u, v, w)(r, θ, z, t) = (u, v, −w)(r, θ, −z, t). (3.3)
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Figure 5. Bifurcation diagram with Re for Γ = 1 and η = 0.5, using 〈E0〉 as the measure of
the flow state. States on solution curves with filled (open) symbols are stable (unstable).

(a) N2: ψ u v w

(b) A1: ψ u v w

Figure 6. Contours of the streamfunction and velocity components of (a) N2 and (b) A1,
both at Re= 700. There are 16 positive (black) and 16 negative (grey) linearly spaced contour
levels in the ranges (a) ψ ∈ [−20, 20], (b) u ∈ [−160, 160], (c) v ∈ [0,Re], (d) w ∈ [−90, 90].

Since the aspect ratio Γ =1, the cells are not square but severely compressed in z,
and this solution loses stability at Re ≈ 133 in a pitchfork bifurcation to the one-
cell states A1 and A1∗ (they both have the same E0), breaking the Z2 symmetry.
An A1 solution UA1 is such that Φτ UA1 = UA1, RαUA1 = UA1, and KUA1 = UA1∗ .
These two symmetrically related states are stable up to Re ≈ 892. N2 restabilizes in a
second pitchfork bifurcation at Re ≈ 603 and the bifurcated states are unstable. The
experimental results in Pfister et al. (1988) report this to occur at Re ≈ 610. Both N2
and A1 coexist and are stable in the range Re ∈ [603, 786]; evolution to one or the
other state depends on initial conditions.

Figure 6(a) shows contours of the streamfunction and velocity components of N2
at Re= 700. The swirling jet of outgoing fluid is clearly evident in the contours
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Figure 7. Variation with Re of (a) the amplitude squared (measured by E2) and (b) the
precession period Tp of RW2a. The curve in (a) shows the fit given by equation (4.2) and the
curve in (b) is a spline fit to the data.

of the azimuthal velocity v. The jet is axisymmetric and separates the flow into
two symmetric cells, as evidenced in the streamline plot. Figure 6(b) shows the
corresponding contours for A1, also at Re = 700. The outgoing swirling jet has moved
very close to the top endwall (for the symmetrically related state A1∗, the jet emerges
near the bottom endwall). The recirculation creates a single-cell-like flow as can be
seen in the streamlines. For both A1 and N2, the jet of angular momentum erupting
from the boundary layer on the rotating inner cylinder is most clearly seen in the
contours of the azimuthal component of velocity v.

4. Subcritical Hopf bifurcation of A1; onset of three-dimensional states
The A1 state remains stable to Re ≈ 892 where it suffers a subcritical Hopf

bifurcation. At slightly larger Re, the flow settles into a rotating wave state with
azimuthal wavenumber m =2, RW2a, that precesses prograde with the rotating inner
cylinder. RW2a has broken the continuous time translation Φτ and replaced it with
a discrete time translation invariance ΦTp

, where Tp is the precession period. It has
also broken axisymmetry. For azimuthal wavenumber m, the flow is invariant to the
cyclic group Cm, generated by the discrete rotation R2π/m. For RW2a, m =2 and the
axisymmetry SO(2) is replaced by C2 (which is isomorphic to the abstract Z2 group).
Since RW2a is a rotating wave, time translations are equivalent to rotations:

Φτ (u, v, w)(r, θ, z, t) = R2πτ/Tp
(u, v, w)(r, θ, z, t), τ ∈ �. (4.1)

RW2a has the jet emerging from the inner cylinder boundary layer near the top.
Applying the K-reflection to RW2a results in another rotating wave solution state,
RW2a∗, with the jet emerging near the bottom.

Continuing the RW2a solution branch to lower Re, it suffers a saddle-node bifurca-
tion at about Re = 890.5, so the subcriticality of the Hopf bifurcation of A1 is very
slight. Figure 7(a) shows the variation with Re of E2, a measure of the amplitude
squared of RW2a. A fit to the data for Re � 1000 of the form

Re = 27, 600E2
2 − 516E2 + 892, (4.2)

which is the normal form for a subcritical Hopf bifurcation in terms of the ampli-
tude squared of the oscillation, E2, illustrates the slightly subcritical nature of the
bifurcation. These results are in excellent agreement with the experimental results
in Pfister et al. (1991) and Pfister et al. (1992), which report that for Γ ∼ 1, A1
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Figure 8. Phase portraits (V+, V−) of the A1, A1∗, RW2a and RW2a∗ solution branches.
The Re values for RW2a are 892, 925, 1000, 1100 and 1200.

suffers a Hopf bifurcation at about Re = 880 to a time-dependent flow with azimuthal
wavenumber m = 2, and that for Γ � 1 this Hopf bifurcation is subcritical.

Figure 8 shows phase portraits of A1, RW2a and their symmetric complements
A1∗ and RW2a∗ projected onto the plane (V+, V−), where V± = v(r = ri/d + 1/2, θ = 0,

z =±Γ/4) are the azimuthal velocities at two symmetrically related points, at various
Re. The portraits above the line V+ = V− are for A1 (points) and RW2a (closed
curves), while those below the line are for A1∗ and RW2a∗. The distance from the
phase portraits to the line V+ =V− is a measure of the degree to which Z2 symmetry
is broken. The loci of A1 and A1∗ phase points show the supercritical pitchfork of
A1 from N2 (phase points of N2 lie on the line V+ =V−), and the subcritical Hopf
bifurcation from A1 to RW2a.

Figure 7(b) shows the variation with Re of the precession period Tp of RW2a. Near
onset, the precession is quite slow, about 25 % of the viscous time. The figure shows
that the period grows substantially as Re is reduced toward onset, but it remains
finite. This is consistent with the experiments of Pfister et al. (1991) and Pfister et al.
(1992) which report that onset of RW2a for Γ > 1.1 is via an infinite-period global
bifurcation, rather than the Hopf bifurcation at lower Γ (Γ � 1).

Figure 9 shows isosurface plots of rv, the axial component of angular momentum,
for RW2a at Re = 1200 viewed from three different perspectives. The jet emerges
from the inner cylinder boundary layer near the top endwall. Its intensity varies
with azimuth resulting in an m =2 rotating wave whose three-dimensional structure
precesses without deformation. The jet is deflected downward by the outer cylinder
wall where it is concentrated into two spiral arms that are then turned in toward the
inner cylinder near the bottom endwall. This causes the boundary layer on the inner
cylinder to bulge. This bulge is seen to spiral up and merge with the strong jet near
the top endwall.
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Figure 9. Isosurface plots of rv at level rv = 340 for RW2a at Re= 1200; view in (b) is
rotated by 180◦ and tilted from that in (a) and (c) is the view from the bottom up.
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Figure 10. Contours of v for LC at Re= 850 over one period T ≈ 0.03216. There are 16
linearly spaced contour levels in the range v ∈ [0,Re].

The RW2a state remains stable at least to the largest Re value considered here
(Re = 1200). We now turn our attention to the branches of solutions bifurcating from
N2, where by Re = 1200 there are multiple three-dimensional non-periodic states.

5. Axisymmetric Hopf bifurcation of N2
At about Re = 786, N2 becomes unstable via a Hopf bifurcation which spawns an

axisymmetric limit cycle, LC, which is invariant to the discrete time translation ΦT ,
i.e. it is T -periodic. In the N2 state, the jet of angular momentum emerged from the
inner cylinder boundary layer at z = 0 and remained symmetric about z = 0. For LC,
the point of emergence of the jet oscillates about z = 0 and the jet flaps about the
mid-plane so that at any instant in time, the flow is not reflection symmetric, i.e.
the Z2 symmetry generated by K has been broken. Figure 10 shows contours of v

over one oscillation period of LC, illustrating the flapping of the axisymmetric jet.
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Figure 11. Variation with Re of (a) the amplitude squared (measured by �E0) and (b) the
period T of LC.

Although the flow is not K-reflection symmetric, the LC state retains a Z2 space–time
symmetry (which we denote ZST

2 ) generated by a reflection about z = 0 together with
a half-period temporal evolution, KΦT/2 (compare the plots of LC at t and t + 3T/6
in figure 10).

Figure 11 shows the amplitude squared (measured by �E0) and the period T of LC.
The linear growth of �E0 with Re and the weak dependence of T on Re are typical
characteristics of a supercritical Hopf bifurcation. The LC oscillations are quite fast,
with small period T of about 3 % of the viscous time. Note however that T is about
40 times the rotation period of the inner cylinder (2π/Re).

At Re ≈ 880, LC becomes unstable. For Re slightly above 880, the flow remains
in a state close to LC for about one viscous time before evolving to a far-off
three-dimensional time-periodic flow (described in the following section).

6. Three-dimensional states with the jet emerging about z = 0

Using an LC state as initial condition for Re slightly above 880, the flow evolves
to a rotating wave with azimuthal wavenumber m =1, RW1s. This is a so-called
tilt wave, where the jet in N2 is tilted so that at any instant in time, RW1s is not
K-reflection invariant. Figure 12 shows contours of v in various meridional planes
and figure 13 is an isosurface plot of rv. As with LC, RW1s has a ZST

2 space–time
symmetry generated by KΦTp/2, where Tp is the precession period. But since RW1s is
a rotating wave, rotation is equivalent to a temporal evolution, and so it is invariant
to a spatio-temporal SO(2) symmetry (denoted SO(2)ST ) generated by R−αΦαTp/2π,
with α ∈ [0, 2π). Furthermore, RW1s differs from LC in that it is left invariant by
a purely spatial Z2 symmetry (which we denote Z∗

2) generated by a reflection about
z = 0 together with a π rotation around the axis, KRπ. So, the complete symmetry
group of RW1s is SO(2)ST × Z∗

2 . The invariance of RW1s to this symmetry is clearly
seen in figure 12 by comparing the contour plots at θ with those (reflected through
z = 0) at θ + π, as well as in figures 13(a) and 13(b) which are views of the isosurface
from perspectives differing by 180◦. Figure 13(c) clearly shows that the swirling jet
forms a pair of spiral arms as it collides with the sidewall boundary layer, with one
arm deflecting into the +z-direction and the other into the −z-direction. Such a pair
of spirals is needed for an m =1 azimuthal mode with Z∗

2 symmetry. A generic m = 1
mode would only have one spiral arm.
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Figure 12. Contours of v for RW1s at Re= 900 in various meridional planes for θ as
indicated. There are 16 linearly spaced contour levels in the range v ∈ [0,Re].
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Figure 13. Isosurface plot of rv at level rv = 320 for RW1s at Re= 900; view in (b) is
rotated by 180◦ and tilted from that in (a) and (c) is the view from the bottom up.

The variation with Re of the precession period of RW1s is shown in figure 14;
RW1s precesses about an order of magnitude faster than RW2a, with Tp ∼ 2 % of
the viscous time.

A stable RW1s is first found at Re =880; attempts to continue this solution branch
to lower Re result in evolutions to LC. The smallest Re at which there is a stable
RW1s is 880 and the largest Re at which there is a stable LC is 879; however one
cannot bifurcate directly from the other (such a bifurcation would need to be of
codimension at least two, because it breaks the SO(2) symmetry and simultaneously
restores the Z2 symmetry, and we are only varying Re). The characteristics of both
LC and RW1s described above indicate that they both bifurcate from N2. We have
only varied Re by increments of one unit, so it is possible that a succession of two
Neimark–Sacker bifurcations occur in the range Re ∈ (879, 880), one that destabilizes
LC and the other stabilizes RW1s; between the two Neimark–Sacker bifurcations
would exist an unstable quasi-periodic mixed-mode. This type of scenario is typical
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Figure 14. Variation with Re of the period Tp of RW1s and RW1a.
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Figure 15. One-parameter path close to a double Hopf bifurcation, including two successive
Hopf bifurcations of N2, HLC and HRW, two Neimark–Sacker bifurcations, NLC and NRW,
and a quasi-periodic state QP connecting them.

of a double Hopf bifurcation. Figure 15 shows a one-parameter path close to a
double Hopf bifurcation, including the aforementioned bifurcations; see Lopez &
Marques (2003) for additional details. One of the Hopf bifurcations, HLC, is clearly
identified at Re= 786 where LC bifurcates from N2; the second Hopf bifurcation,
HRW, is estimated to occur at about Re= 870 by extrapolating the amplitude squared
(E1) of RW1s to zero (see figure 16). A double Hopf bifurcation of LC and RW1s
has previously been found and analysed at Re = 541, Γ = 0.5, η = 0.676 (Lopez &
Marques 2003); since the problem has three parameters, there is a one-dimensional
curve of codimension-two double Hopf bifurcations. That double Hopf bifurcation
and the one nearby in the present problem are probably on that curve.

RW1s remains stable up to Re ≈ 964, at which point it suffers a supercritical
pitchfork bifurcation, retaining the SO(2)ST but breaking the Z∗

2 symmetry of RW1s,
and spawns a pair of symmetrically related rotating waves, still with azimuthal
wavenumber m =1, RW1a and RW1a∗. Figure 16(a) shows the amplitude squared of
both RW1s and RW1a. We have been able to compute some unstable RW1s solutions
beyond the pitchfork bifurcation either by using initial conditions close to RW1s or
for Re well beyond the pitchfork bifurcation where these computed solutions were
found as transient states which after some time evolve to other states to be described
below. The unstable RW1s are indicated by the open symbols in the figure. The
precession period of RW1a is about the same as that of RW1s; figure 14 shows the
variation with Re of the precession periods of both rotating waves. Figure 17 shows
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Figure 16. Variation with Re of (a) 〈E1〉 and (b) �E1 of RW1s, RW1a, MRW, MRW∗, T3
and STC. Open symbols in (a) denote unstable RW1s.
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Figure 17. Phase portraits (V+, V−) of the RW1s (solid lines) and RW1a (grey dotted lines)
and RW1a∗ (dashed lines) solution branches, over a range of Re.

phase portraits of RW1s and both RW1a and RW1a∗ before and after the pitchfork
bifurcation. The Re values are 880, 900 and 925 for RW1s, and 970, 1010 and 1050 for
RW1a. The extent to which RW1a is non-Z2 symmetric is illustrated in the sequence
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Figure 18. Contours of v for RW1a at Re= 1000 in various meridional planes for θ as
indicated. There are 16 linearly spaced contour levels in the range v ∈ [0,Re].

(a)

(b)

(c)

Figure 19. Isosurface plot of rv at level rv = 390 for RW1a at Re =1000; view in (b) is
rotated by 180◦ and tilted from that in (a) and (c) is the view from the bottom up.

of phase portraits in figure 17, showing the pitchfork nature of the bifurcation from
RW1s to RW1a and RW1a∗.

Figure 18 shows contours of v of RW1a at Re =1000; the basic features are very
similar to those of RW1s, the fundamental difference being that RW1a is not Z∗

2

symmetric; compare contours at θ and θ + π. The isosurface plots of RW1a in
figure 19 show that as for RW1s, the jet develops two spiral arms, but now one arm
is more intense than the other. Since RW1a is found at higher Re than RW1s, the
boundary layer on the inner cylinder and the jet emanating from it are more intense
than for RW1s. The interaction between the jet and the boundary layer on the outer
cylinder wall for RW1a is quite intense and has a feedback effect on the jet at small
radii. This is manifested in a spiral bulge seen in the inner cylinder boundary layer
caused by the reflection of the jet from the sidewall boundary layer. This is not
evident in RW1s at lower Re.
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Figure 20. Isosurface plot of rv at level rv = 340 for MRW at Re= 1025 over one modulation
period Tm ≈ 0.022 in a frame of reference rotating with the precession period Tp ≈ 0.027 in
which MRW is a (relative) periodic orbit.

7. Transition to quasi-periodic and complex spatio-temporal dynamics
In the previous sections we have described solutions belonging to two different

branches, illustrated in figure 5. The lower branch consists of A1 and RW2a, with
flows consisting of singles cells that are not Z2 symmetric. The upper branch consists
of solutions exhibiting a swirling jet around z =0. The solutions on the lower branch
are robust, in the sense that they do not experience further bifurcations in the
Reynolds number range examined (up to Re =1200). In contrast, the upper branch
undergoes transitions to complex dynamics in the range 1000< Re < 1200. How
three-dimensional flows arise on both branches has been described above, and now
we address the transition to complex spatio-temporal dynamics along the upper
branch.

For Re � 950, and coexisting with the rotating waves RW1s and RW1a, a modulated
rotating wave MRW appears, as shown in figure 16. Figure 20 shows isosurfaces of
rv of MRW at Re = 1025 over one modulation period, Tm ≈ 0.022. The images are
shown in a frame of reference rotating at the precession period of the underlying
rotating wave, Tp ≈ 0.027, in which MRW is a (relative) periodic orbit. The sequence
of isosurfaces shows that the jet of angular momentum which emerges from the inner
cylinder boundary layer at about z = 0 has a slight tilt (m = 1 azimuthal wavenumber),
and remains coherent until it gets very close to the outer cylinder, where on one side
of the cylinder it collides and spreads into the sidewall boundary layer. Due to the tilt
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Figure 21. Phase portraits (V+, V−) (grey points) and Poincaré sections W+ + W− =0 (black
dots) of (a) MRW at Re= 1025, (b) T3 Re = 1030, and (c) MRW∗ at Re= 1175.

of the jet, the spreading into the sidewall layer is not symmetric about z = 0. However,
during about half of the modulation period the jet is preferentially spread into the
+z-direction and during the other half into the −z-direction. The jet of angular
momentum in the sidewall boundary layer is then turned back into the interior where
it spirals back into the inner cylinder boundary layer. Spiral bulges can be seen in the
isosurface near the inner cylinder. The isosurface sequence also indicates that in the
rotating frame, MRW has a space–time ZST

2 symmetry generated by a reflection about
z = 0 together with Tm/2 temporal evolution, R−πTm/Tp

KΦTm/2. This is clearly evident
by comparing the isosurface at t and t + 4Tm/8. This symmetry is also evident in the
phase portrait (grey points) shown in figure 21(a) which is symmetrically distributed
about the line V+ = V−. That figure also shows a Poincaré section W+ +W− =0 drawn
with larger black dots, showing a closed loop and providing clear evidence of the
quasi-periodic nature of MRW. The Poincaré section cuts the 2-torus on which MRW
trajectories flow twice, forming two closed loops in the section. We only show one of
these in the figure.

At Re ≈ 1030, the MRW solution changes, and complex dynamics appear. The
MRW becomes a three-torus T3 at Re ≈ 1027, as illustrated in figure 21. For T3,
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Figure 22. Power spectral densities of V+ of (a) MRW at Re= 1025 and (b) T3 at Re= 1030.
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Figure 23. Time series of E1 of (a) MRW at Re= 1025 and (b) T3 at Re= 1030.

all spatial and spatio-temporal symmetries of the problem have been broken. At
Re = 1025 (figure 21a) the solution is still a two-torus, and the Poincaré section is a
closed loop. At Re =1030 (figure 21b) the Poincaré section is no longer a closed loop,
but experiences a slow drift along the phase portrait, signalling that an additional very
low frequency has appeared, and the solution is now a three-torus. Power spectrum
of V+ for MRW at Re = 1025 and T3 at Re= 1030 are shown in figure 22. The
spectrum for MRW consists of peaks at the precession frequency, fp , and at the
modulation frequency, fm, and their linear combinations, some of which are labelled
in the figure. The spectrum for T3 is very similar; all of the peaks in the MRW
spectrum are accounted for, but there is an additional low frequency, f3, and its
linear combinations with the other peaks. This is the third frequency of T3. Figure 23
shows short segments of the time series of the modal energy E1 of MRW and T3.
The modal energy essentially filters out the precession frequency, fp , and for MRW
E1(t) is a periodic signal with period 2/fm (it is twice 1/fm since E1 is a squared
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Figure 24. Isosurface plot of rv at level rv = 340 for T3 at Re =1030; view in (b) is rotated
by 180◦ and tilted from that in (a) and (c) is the view from the bottom up.
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Figure 25. (a) Phase portrait (V+, V−) and (b) Poincaré section W+ + W− = 0 of STC for
Re= 1200.

quantity). For T3, E1(t) is clearly quasi-periodic due to the presence of both fm and
f3 frequencies.

The spatial structure of T3 is virtually indistinguishable from that of MRW;
compare the isosurface plots of MRW at Re= 1025 in figure 20 with that of T3
at Re= 1030 in figure 24. The two solutions precess with about the same period,
Tp (see the power spectra for the two in figure 22), and the modulation period Tm

corresponding to the alternation in intensity between the spiral arm in the top half
of the sidewall layer and the spiral arm in the bottom half is also common to both.
The third frequency in T3 corresponds to a modulation of the relative intensification
of the spiral arms such that the amount that one arm is intensified relative to the
other varies on the slow f3 time scale. This is a subtle effect, but its signature is quite
evident in the E1 time series in figure 23.

On further increasing Re, the three-torus is destroyed, and complex spatio-temporal
dynamics develop. The branch of spatio-temporal complexity STC is disjoint from
the T3 branch (see figure 16). The phase portrait (figure 25a) and the corresponding
Poincaré section (figure 25b) for STC at Re = 1200 look almost identical. The STC
trajectory traverses the Poincaré section in both directions; in the figure, black dots
indicate intersections in one direction and grey dots are intersections in the other
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Figure 26. Isosurface plot of rv at level rv =410 for STC at Re =1200; view in (b) is
rotated by 180◦ and tilted from that in (a) and (c) is the view from the bottom up.
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Figure 27. Isosurface plot of rv at level rv = 450 for MRW∗ at Re= 1175; view in (b) is
rotated by 180◦ and tilted from that in (a) and (c) is the view from the bottom up.

direction. The two- and three-tori structures of MRW and T3 are destroyed and
replaced by a complex attractor; all spatial and spatio-temporal symmetries are
broken and the temporal coherence in T3 is also lost in STC, but both the phase
portrait and Poincaré section of STC indicate that it has Z2 symmetry in some
averaged sense.

The physical structure of the STC state is not very different from that of T3; the jet
still emerges from the inner cylinder boundary layer about z = 0 and collides with the
outer cylinder boundary layer preferentially on one side since STC still has significant
energy in the m =1 azimuthal mode. The difference with T3 is primarily that for
T3, when the jet collides with the sidewall layer, it spawns spiral arms which remain
coherent, whereas for STC at higher Re the collision is more intense and the spiral
arms break up. When these reflect back into the interior, they feed back onto the jet
causing it to wrinkle and wobble. Figure 26 shows a snapshot isosurface of rv for STC
at Re = 1200 from different perspectives illustrating this complex spatial structure.

At Re ≈ 1100, a different branch of modulated rotating waves MRW∗ appears, as
illustrated in figure 16. The phase portrait and Poincaré section of MRW∗ are shown
in figure 21(c), clearly illustrating that this branch of quasi-periodic states is different
from the others. The jet in MRW∗ has a pronounced m =1 tilt as it emerges from
the inner cylinder boundary layer near z =0 and is sucked into the endwall boundary
layers rather than colliding with the sidewall layer. Due to the tilt, half of the jet
is sucked into the top and the other half into the bottom endwall layer. Figure 27
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Figure 28. Isosurface plot of rv at level rv =450 for MRW∗ at Re= 1175 over one modulation
period Tm ≈ 1.44×10−3 in a frame of reference rotating with the precession period Tp ≈ 0.0144
in which MRW∗ is a (relative) periodic orbit.

illustrates this with an isosurface of rv at Re= 1175; this figure also illustrates that
MRW∗ is invariant to the spatial Z∗

2 generated by KRπ. The swirling flow in the
endwall layers stretches the jet into a spiral arm in each endwall layer which snap-off
periodically and the recoil in the jet is such that the part that was sucked into the
top (bottom) recoils into the bottom (top) endwall layer following the snap-off. This
process is illustrated in a sequence of isosurfaces of rv over one modulation period
Tm, shown in figure 28 in a frame of reference rotating at the precession period Tp . It
is clear that this process corresponds to a discrete spatio-temporal rotation symmetry
CST

2 , where in the rotating frame MRW∗ is invariant to a rotation Rπ together with a
half-period evolution ΦT m/2 (compare isosurfaces at t with those at t + 4Tm/8). The
complete symmetry group of MRW∗ is CST

2 × Z∗
2 , generated by R−πTm/Tp

RπΦTm/2 and
KRπ.

8. Discussion and conclusions
The onset of three-dimensional unsteady flow in the small-aspect-ratio regime of

Taylor–Couette flow has been clarified. In this regime, the dynamics are dominated
by the competition between the single-cell anomalous mode A1 and the two-cell
normal mode N2. Whereas the steady axisymmetric aspects of this competition are
well-understood following extensive experimental and numerical investigations, the
onset of unsteady and three-dimensional flows observed experimentally for Re � 800
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have presented a challenge to our understanding of their evolution, largely due to
the number of competing states with both spatial and temporal complexity. Our
numerical exploration in the middle of the parameter regime where this competition
is manifested provides new insight into the mechanisms responsible for the onset
of time-dependence and three-dimensional flow. The three-dimensional numerical
solutions show that the manner in which the jet of angular momentum erupting from
the inner cylinder boundary layer behaves as it redistributes the angular momentum
and its interactions with the sidewall and endwall boundary layers leads to the various
spatio-temporal states which break various aspects of the symmetry of the problem.

Low-dimensional dynamical systems theory has provided much guidance on and
understanding of the transition processes from steady laminar flow to turbulence,
inspired by works such as Ruelle & Takens (1971) and Swinney & Gollub (1981). Most
studies that have focused on relating low-dimensional dynamical systems theory to
transitions in fluid flows have been in geometrically simple flows, where the problem
is well-defined, boundary conditions well-known, and both laboratory experiments
and numerical simulations can be performed with a high degree of precision. The
geometric simplicity of these problems is associated with symmetries, and it is well-
known that symmetries can lead to dynamical behaviour which would be unexpected
(i.e. degenerate) in the absence of symmetries (Golubitsky, Stewart & Schaeffer 1988;
Crawford & Knobloch 1991; Chossat & Iooss 1994). An integral component of the
present study is the implementation of dynamical systems theory and symmetry to
characterize and interpret the results. Without such tools, piecing together the various
solution branches and how they are related (or not) becomes a hopeless task. There is
a growing wider appreciation of such an approach in hydrodynamic transitions (e.g.
see the recent review by Kerswell 2005).

A summary of the various solution branches we have found, organized by
their spatial and spatio-temporal symmetries and (where available) the bifurcations
responsible for their birth/death is provided in figure 29. This diagram is simply a
graphical summary of the stable solutions found and should not be confused with a
lattice of subgroups of SO(2) × Z2 (there is an infinite number of such subgroups).

At the top of figure 29, we have the basic flow state N2, which is invariant to the
full symmetry group of the problem, SO(2) × Z2, leaving the governing equations
invariant. Beside each stable solution found is the symmetry subgroup leaving the
solution invariant, and below each symmetry group the generators are presented. The
solid downward pointing arrows correspond to the different bifurcations we have
found in the present study, and each arrow is labelled with the type of bifurcation
involved. The dashed arrows are conjectured connections between different solutions
based on their symmetries.

The diagram (figure 29) consists of three main branches: (i) the A1 branch on
which the K symmetry is broken, (ii) the STC branch along which the time invariance
is broken in successive Hopf bifurcations, and (iii) a branch on which the symmetry
KRπ plays an important role. The A1 branch corresponds to the states that break the
reflection symmetry K , resulting in flows with the angular momentum jet emerging
close to one of the endwalls. This branch is robust, in the sense that the solutions
on it only undergo a Hopf bifurcation (resulting in the rotating wave state RW2a)
in the Reynolds number range examined. In contrast, the solutions on the other
branches experience several bifurcations resulting in complex flows; they correspond
to flows with the angular momentum jet emerging from the centre of the inner
cylinder. On the second branch, the K symmetry becomes a space–time symmetry
of LC and MRW, and this is finally broken when all symmetries disappear in the
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Figure 29. Diagram showing the relationships between the various observed solution
branches, their symmetries, and the symmetry-breaking bifurcations. Bifurcations: PF,
pitchfork; CPF cyclic pitchfork; Hn, Hopf bifurcation to an n-dimensional torus.

bifurcation H3 to a three-torus state T3; the resulting symmetry group, I , contains
only the identity transformation. The conjectured connection in this branch could
be a Neimark–Sacker bifurcation (a Hopf bifurcation of limit cycles, H2, resulting
in a two-torus). In the third branch, all solutions except RW1a preserve the spatial
symmetry KRπ, which is broken in a pitchfork bifurcation of limit cycles, CPF.

Our investigation has identified the modes responsible for the transition to spatio-
temporal complexity. Of course, our one-parameter investigation (varying Re while
keeping the geometry fixed) is incomplete in the sense that some of the bifurcations
at higher Re have only been conjectured. The dynamics involved are very likely to be
organized by codimension-two and codimension-three bifurcations for which a much
more comprehensive study varying all three governing parameters, Re, Γ and η, is
required. Such a study presents a very exciting opportunity to investigate the transition
from laminar flow to spatio-temporal complexity and ultimately to turbulence in a
systematic fashion in a flow where well-controlled experiments are possible.
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